Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 79
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
Ther Adv Respir Dis ; 17: 17534666231158276, 2023.
Статья в английский | MEDLINE | ID: covidwho-2319790

Реферат

BACKGROUND: In coronavirus disease 2019 (COVID-19) patients, elevated levels of inflammatory cytokines from over stimulation of immune cells have become a concern due to the potential outburst of cytokine storm that damages the tissues and organs, especially the lungs. This leads to the manifestation of COVID-19 symptoms, such as pneumonia, acute respiratory distress syndrome (ARDS), multiple organ failure, and eventually death. Mesenchymal stromal/stem cells (MSCs) are currently one of hopeful approaches in treating COVID-19 considering its anti-inflammatory and immunomodulatory functions. On that account, the number of clinical trials concerning the use of MSCs for COVID-19 has been increasing. However, the number of systematic reviews and meta-analysis that specifically discuss its potential as treatment for the disease is still lacking. Therefore, this review will assess the safety and efficacy of MSC administration in COVID-19 patients. OBJECTIVES: To pool evidence on the safety and efficacy of MSCs in treating COVID-19 by observing MSC-related adverse effects as well as evaluating its effects in reducing inflammatory response and improving pulmonary function. DATA SOURCES AND METHODS: Following literature search across six databases and one trial register, full-text retrieval, and screening against eligibility criteria, only eight studies were included for data extraction. All eight studies evaluated the use of umbilical cord-derived mesenchymal stromal/stem cell (UC-MSC), infused intravenously. Of these eight studies, six studies were included in meta-analysis on the incidence of mortality, adverse events (AEs), and serious adverse events (SAEs), and the levels of C-reactive protein (CRP) and interleukin (IL)-6. Meta-analysis on pulmonary function was not performed due to insufficient data. RESULTS: MSC-treated group showed significantly lower risk of mortality than the control group (p = 0.03). No statistical significance was observed on the incidence of AEs (p = 0.78) and SAEs (p = 0.44), and the levels of CRP (p = 0.06) and IL-6 (p = 0.09). CONCLUSION: MSCs were safe for use, with lower risk of mortality and no association with AEs. Regarding efficacy, descriptive analysis showed indications of improvement on the inflammatory reaction, lung clearance, and oxygenation status despite the lack of statistical significance in meta-analysis of CRP and IL-6. Nevertheless, more studies are needed for affirmation. REGISTRATION: This systematic review and meta-analysis was registered on the PROSPERO database (no. CRD42022307730).


Тема - темы
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , SARS-CoV-2/metabolism , Interleukin-6/metabolism , Mesenchymal Stem Cell Transplantation/adverse effects , Cytokines/metabolism , Mesenchymal Stem Cells/metabolism
2.
Front Immunol ; 14: 1120175, 2023.
Статья в английский | MEDLINE | ID: covidwho-2265624

Реферат

In the last few decades, the practical use of stem cells (SCs) in the clinic has attracted significant attention in the regenerative medicine due to the ability of these cells to proliferate and differentiate into other cell types. However, recent findings have demonstrated that the therapeutic capacity of SCs may also be mediated by their ability to secrete biologically active factors, including extracellular vesicles (EVs). Such submicron circular membrane-enveloped vesicles may be released from the cell surface and harbour bioactive cargo in the form of proteins, lipids, mRNA, miRNA, and other regulatory factors. Notably, growing evidence has indicated that EVs may transfer their bioactive content into recipient cells and greatly modulate their functional fate. Thus, they have been recently envisioned as a new class of paracrine factors in cell-to-cell communication. Importantly, EVs may modulate the activity of immune system, playing an important role in the regulation of inflammation, exhibiting broad spectrum of the immunomodulatory activity that promotes the transition from pro-inflammatory to pro-regenerative environment in the site of tissue injury. Consequently, growing interest is placed on attempts to utilize EVs in clinical applications of inflammatory-related dysfunctions as potential next-generation therapeutic factors, alternative to cell-based approaches. In this review we will discuss the current knowledge on the biological properties of SC-derived EVs, with special focus on their role in the regulation of inflammatory response. We will also address recent findings on the immunomodulatory and pro-regenerative activity of EVs in several disease models, including in vitro and in vivo preclinical, as well as clinical studies. Finally, we will highlight the current perspectives and future challenges of emerging EV-based therapeutic strategies of inflammation-related diseases treatment.


Тема - темы
Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Regenerative Medicine , Mesenchymal Stem Cells/metabolism , Extracellular Vesicles/metabolism , Stem Cells/metabolism , Inflammation/metabolism
3.
Int J Mol Sci ; 24(5)2023 Feb 23.
Статья в английский | MEDLINE | ID: covidwho-2253265

Реферат

This study aimed to identify the impact of mesenchymal stem cell transplantation on the safety and clinical outcomes of patients with severe COVID-19. This research focused on how lung functional status, miRNA, and cytokine levels changed following mesenchymal stem cell transplantation in patients with severe COVID-19 pneumonia and their correlation with fibrotic changes in the lung. This study involved 15 patients following conventional anti-viral treatment (Control group) and 13 patients after three consecutive doses of combined treatment with MSC transplantation (MCS group). ELISA was used to measure cytokine levels, real-time qPCR for miRNA expression, and lung computed tomography (CT) imaging to grade fibrosis. Data were collected on the day of patient admission (day 0) and on the 7th, 14th, and 28th days of follow-up. A lung CT assay was performed on weeks 2, 8, 24, and 48 after the beginning of hospitalization. The relationship between levels of biomarkers in peripheral blood and lung function parameters was investigated using correlation analysis. We confirmed that triple MSC transplantation in individuals with severe COVID-19 was safe and did not cause severe adverse reactions. The total score of lung CT between patients from the Control and MSC groups did not differ significantly on weeks 2, 8, and 24 after the beginning of hospitalization. However, on week 48, the CT total score was 12 times lower in patients in the MSC group (p ≤ 0.05) compared to the Control group. In the MSC group, this parameter gradually decreased from week 2 to week 48 of observation, whereas in the Control group, a significant drop was observed up to week 24 and remained unchanged afterward. In our study, MSC therapy improved lymphocyte recovery. The percentage of banded neutrophils in the MSC group was significantly lower in comparison with control patients on day 14. Inflammatory markers such as ESR and CRP decreased more rapidly in the MSC group in comparison to the Control group. The plasma levels of surfactant D, a marker of alveocyte type II damage, decreased after MSC transplantation for four weeks in contrast to patients in the Control group, in whom slight elevations were observed. We first showed that MSC transplantation in severe COVID-19 patients led to the elevation of the plasma levels of IP-10, MIP-1α, G-CSF, and IL-10. However, the plasma levels of inflammatory markers such as IL-6, MCP-1, and RAGE did not differ between groups. MSC transplantation had no impact on the relative expression levels of miR-146a, miR-27a, miR-126, miR-221, miR-21, miR-133, miR-92a-3p, miR-124, and miR-424. In vitro, UC-MSC exhibited an immunomodulatory impact on PBMC, increasing neutrophil activation, phagocytosis, and leukocyte movement, activating early T cell markers, and decreasing effector and senescent effector T cell maturation.


Тема - темы
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , MicroRNAs , Respiratory Distress Syndrome , Humans , COVID-19/metabolism , Leukocytes, Mononuclear , Respiratory Distress Syndrome/metabolism , Mesenchymal Stem Cell Transplantation/methods , Cytokines/metabolism , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , Umbilical Cord
4.
Cell Death Dis ; 14(1): 66, 2023 01 28.
Статья в английский | MEDLINE | ID: covidwho-2221801

Реферат

Coronavirus disease 2019 (COVID-19) treatments are still urgently needed for critically and severely ill patients. Human umbilical cord-mesenchymal stem cells (hUC-MSCs) infusion has therapeutic benefits in COVID-19 patients; however, uncertain therapeutic efficacy has been reported in severe patients. In this study, we selected an appropriate cytokine, IL-18, based on the special cytokine expression profile in severe pneumonia of mice induced by H1N1virus to prime hUC-MSCs in vitro and improve the therapeutic effect of hUC-MSCs in vivo. In vitro, we demonstrated that IL-18-primed hUC-MSCs (IL18-hUCMSC) have higher proliferative ability than non-primed hUC-MSCs (hUCMSCcon). In addition, VCAM-1, MMP-1, TGF-ß1, and some chemokines (CCL2 and CXCL12 cytokines) are more highly expressed in IL18-hUCMSCs. We found that IL18-hUCMSC significantly enhanced the immunosuppressive effect on CD3+ T-cells. In vivo, we demonstrated that IL18-hUCMSC infusion could reduce the body weight loss caused by a viral infection and significantly improve the survival rate. Of note, IL18-hUCMSC can also significantly attenuate certain clinical symptoms, including reduced activity, ruffled fur, hunched backs, and lung injuries. Pathologically, IL18-hUCMSC transplantation significantly enhanced the inhibition of inflammation, viral load, fibrosis, and cell apoptosis in acute lung injuries. Notably, IL18-hUCMSC treatment has a superior inhibitory effect on T-cell exudation and proinflammatory cytokine secretion in bronchoalveolar lavage fluid (BALF). Altogether, IL-18 is a promising cytokine that can prime hUC-MSCs to improve the efficacy of precision therapy against viral-induced pneumonia, such as COVID-19.


Тема - темы
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Pneumonia, Viral , Humans , Mice , Animals , Interleukin-18/metabolism , Umbilical Cord/metabolism , T-Lymphocytes/metabolism , COVID-19/metabolism , Cytokines/metabolism , Pneumonia, Viral/therapy , Pneumonia, Viral/metabolism , Immunosuppression Therapy , Mesenchymal Stem Cells/metabolism
5.
Cells ; 11(21)2022 Oct 25.
Статья в английский | MEDLINE | ID: covidwho-2199804

Реферат

Extracellular vesicles (EVs) are small lipid bilayer-delimited particles that are naturally released from cells into body fluids, and therefore can travel and convey regulatory functions in the distal parts of the body. EVs can transmit paracrine signaling by carrying over cytokines, chemokines, growth factors, interleukins (ILs), transcription factors, and nucleic acids such as DNA, mRNAs, microRNAs, piRNAs, lncRNAs, sn/snoRNAs, mtRNAs and circRNAs; these EVs travel to predecided destinations to perform their functions. While mesenchymal stem cells (MSCs) have been shown to improve healing and facilitate treatments of various diseases, the allogenic use of these cells is often accompanied by serious adverse effects after transplantation. MSC-produced EVs are less immunogenic and can serve as an alternative to cellular therapies by transmitting signaling or delivering biomaterials to diseased areas of the body. This review article is focused on understanding the properties of EVs derived from different types of MSCs and MSC-EV-based therapeutic options. The potential of modern technologies such as 3D bioprinting to advance EV-based therapies is also discussed.


Тема - темы
Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Cell- and Tissue-Based Therapy , MicroRNAs/genetics , MicroRNAs/metabolism , Bioengineering
6.
Int J Mol Sci ; 23(19)2022 Sep 23.
Статья в английский | MEDLINE | ID: covidwho-2066119

Реферат

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial fibrotic disease that leads to disability and death within 5 years of diagnosis. Pulmonary fibrosis is a disease with a multifactorial etiology. The concept of aberrant regeneration of the pulmonary epithelium reveals the pathogenesis of IPF, according to which repeated damage and death of alveolar epithelial cells is the main mechanism leading to the development of progressive IPF. Cell death provokes the migration, proliferation and activation of fibroblasts, which overproduce extracellular matrix, resulting in fibrotic deformity of the lung tissue. Mesenchymal stem cells (MSCs) and extracellular vesicles (EVs) are promising therapies for pulmonary fibrosis. MSCs, and EVs derived from MSCs, modulate the activity of immune cells, inhibit the expression of profibrotic genes, reduce collagen deposition and promote the repair of damaged lung tissue. This review considers the molecular mechanisms of the development of IPF and the multifaceted role of MSCs in the therapy of IPF. Currently, EVs-MSCs are regarded as a promising cell-free therapy tool, so in this review we discuss the results available to date of the use of EVs-MSCs for lung tissue repair.


Тема - темы
Extracellular Vesicles , Idiopathic Pulmonary Fibrosis , Mesenchymal Stem Cells , Extracellular Vesicles/metabolism , Fibroblasts/metabolism , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/therapy , Lung/pathology , Mesenchymal Stem Cells/metabolism
7.
Front Immunol ; 13: 943333, 2022.
Статья в английский | MEDLINE | ID: covidwho-2022722

Реферат

Mesenchymal stromal cell (MSC) therapy has seen increased attention as a possible option to treat a number of inflammatory conditions including COVID-19 acute respiratory distress syndrome (ARDS). As rates of obesity and metabolic disease continue to rise worldwide, increasing proportions of patients treated with MSC therapy will be living with obesity. The obese environment poses critical challenges for immunomodulatory therapies that should be accounted for during development and testing of MSCs. In this review, we look to cancer immunotherapy as a model for the challenges MSCs may face in obese environments. We then outline current evidence that obesity alters MSC immunomodulatory function, drastically modifies the host immune system, and therefore reshapes interactions between MSCs and immune cells. Finally, we argue that obese environments may alter essential features of allogeneic MSCs and offer potential strategies for licensing of MSCs to enhance their efficacy in the obese microenvironment. Our aim is to combine insights from basic research in MSC biology and clinical trials to inform new strategies to ensure MSC therapy is effective for a broad range of patients.


Тема - темы
COVID-19 , Mesenchymal Stem Cells , COVID-19/therapy , Cells, Cultured , Humans , Immunomodulation , Mesenchymal Stem Cells/metabolism , Obesity/metabolism , Obesity/therapy
8.
Int J Mol Sci ; 23(17)2022 Sep 02.
Статья в английский | MEDLINE | ID: covidwho-2010107

Реферат

Mesenchymal stem cells (MSCs) are multipotent stem cells with the capacity of self-renewal, homing, and low immunogenicity. These distinct biological characteristics have already shown immense potential in regenerative medicine. MSCs also possess immunomodulatory properties that can maintain immune homeostasis when the immune response is over-activated or under-activated. The secretome of MSCs consists of cytokines, chemokines, signaling molecules, and growth factors, which effectively contribute to the regulation of immune and inflammatory responses. The immunomodulatory effects of MSCs can also be achieved through direct cell contact with microenvironmental factors and immune cells. Furthermore, preconditioned and engineered MSCs can specifically improve the immunomodulation effects in diverse clinical applications. These multifunctional properties of MSCs enable them to be used as a prospective therapeutic strategy to treat immune disorders, including autoimmune diseases and incurable inflammatory diseases. Here we review the recent exploration of immunomodulatory mechanisms of MSCs and briefly discuss the promotion of the genetically engineered MSCs. Additionally, we review the potential clinical applications of MSC-mediated immunomodulation in four types of immune diseases, including systemic lupus erythematosus, Crohn's disease, graft-versus-host disease, and COVID-19.


Тема - темы
COVID-19 , Immune System Diseases , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , COVID-19/therapy , Cytokines/metabolism , Humans , Immune System Diseases/metabolism , Immunity , Immunomodulation , Mesenchymal Stem Cells/metabolism
9.
Cells ; 11(17)2022 08 29.
Статья в английский | MEDLINE | ID: covidwho-2005945

Реферат

Medical health systems continue to be challenged due to newly emerging COVID-19, and there is an urgent need for alternative approaches for treatment. An increasing number of clinical observations indicate cytokine storms to be associated with COVID-19 severity and also to be a significant cause of death among COVID-19 patients. Cytokine storm involves the extensive proliferative and hyperactive activity of T and macrophage cells and the overproduction of pro-inflammatory cytokines. Stem cells are the type of cell having self-renewal properties and giving rise to differentiated cells. Currently, stem cell therapy is an exciting and promising therapeutic approach that can treat several diseases that were considered incurable in the past. It may be possible to develop novel methods to treat various diseases by identifying stem cells' growth and differentiation factors. Treatment with mesenchymal stem cells (MSCs) in medicine is anticipated to be highly effective. The present review article is organized to put forward the positive arguments and implications in support of mesenchymal stem cell therapy as an alternative therapy to cytokine storms, to combat COVID-19. Using the immunomodulatory potential of the MSCs, it is possible to fight against COVID-19 and counterbalance the cytokine storm.


Тема - темы
COVID-19 , Cytokine Release Syndrome , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , COVID-19/therapy , Cytokine Release Syndrome/therapy , Cytokines/metabolism , Humans , Mesenchymal Stem Cells/metabolism
10.
Int J Mol Sci ; 23(14)2022 Jul 21.
Статья в английский | MEDLINE | ID: covidwho-1958594

Реферат

Mesenchymal stem cells (MSCs) play a critical role in response to stress such as infection. They initiate the removal of cell debris, exert major immunoregulatory activities, control pathogens, and lead to a remodeling/scarring phase. Thus, host-derived 'danger' factors released from damaged/infected cells (called alarmins, e.g., HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (LPS, single strand RNA) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of growth factors and chemoattractant molecules that influence immune cell recruitment and stem cell mobilization. MSC, in an ultimate contribution to tissue repair, may also directly trans- or de-differentiate into specific cellular phenotypes such as osteoblasts, chondrocytes, lipofibroblasts, myofibroblasts, Schwann cells, and they may somehow recapitulate their neural crest embryonic origin. Failure to terminate such repair processes induces pathological scarring, termed fibrosis, or vascular calcification. Interestingly, many viruses and particularly those associated to chronic infection and inflammation may hijack and polarize MSC's immune regulatory activities. Several reports argue that MSC may constitute immune privileged sanctuaries for viruses and contributing to long-lasting effects posing infectious challenges, such as viruses rebounding in immunocompromised patients or following regenerative medicine therapies using MSC. We will herein review the capacity of several viruses not only to infect but also to polarize directly or indirectly the functions of MSC (immunoregulation, differentiation potential, and tissue repair) in clinical settings.


Тема - темы
Mesenchymal Stem Cells , Viruses , Cell Differentiation , Chondrocytes/metabolism , Cicatrix/metabolism , Humans , Mesenchymal Stem Cells/metabolism
11.
Front Cell Infect Microbiol ; 12: 850744, 2022.
Статья в английский | MEDLINE | ID: covidwho-1952256

Реферат

The endemic and pandemic caused by respiratory virus infection are a major cause of mortality and morbidity globally. Thus, broadly effective antiviral drugs are needed to treat respiratory viral diseases. Small extracellular vesicles derived from human umbilical cord mesenchymal stem cells (U-exo) have recently gained attention as a cell-free therapeutic strategy due to their potential for safety and efficacy. Anti-viral activities of U-exo to countermeasure respiratory virus-associated diseases are currently unknown. Here, we tested the antiviral activities of U-exo following influenza A/B virus (IFV) and human seasonal coronavirus (HCoV) infections in vitro. Cells were subject to IFV or HCoV infection followed by U-exo treatment. U-exo treatment significantly reduced IFV or HCoV replication and combined treatment with recombinant human interferon-alpha protein (IFN-α) exerted synergistically enhanced antiviral effects against IFV or HCoV. Interestingly, microRNA (miR)-125b, which is one of the most abundantly expressed small RNAs in U-exo, was found to suppress IFV replication possibly via the induction of IFN-stimulated genes (ISGs). Furthermore, U-exo markedly enhanced RNA virus-triggered IFN signaling and ISGs production. Similarly, human nasal epithelial cells cultured at the air-liquid interface (ALI) studies broadly effective anti-viral and anti-inflammatory activities of U-exo against IFV and HCoV, suggesting the potential role of U-exo as a promising intervention for respiratory virus-associated diseases.


Тема - темы
Coronavirus , Exosomes , Extracellular Vesicles , Mesenchymal Stem Cells , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Humans , Mesenchymal Stem Cells/metabolism , Umbilical Cord
12.
Cells ; 11(14)2022 07 12.
Статья в английский | MEDLINE | ID: covidwho-1938702

Реферат

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is an enveloped, positive sense, single stranded RNA (+ssRNA) virus, belonging to the genus Betacoronavirus and family Coronaviridae. It is primarily transmitted from infected persons to healthy ones through inhalation of virus-laden respiratory droplets. After an average incubation period of 2-14 days, the majority of infected individuals remain asymptomatic and/or mildly symptomatic, whereas the remaining individuals manifest a myriad of clinical symptoms, including fever, sore throat, dry cough, fatigue, chest pain, and breathlessness. SARS-CoV-2 exploits the angiotensin converting enzyme 2 (ACE-2) receptor for cellular invasion, and lungs are amongst the most adversely affected organs in the body. Thereupon, immune responses are elicited, which may devolve into a cytokine storm characterized by enhanced secretion of multitude of inflammatory cytokines/chemokines and growth factors, such as interleukin (IL)-2, IL-6, IL-7, IL-8, IL-9, tumor necrosis factor alpha (TNF-α), granulocyte colony-stimulating factor (GCSF), basic fibroblast growth factor 2 (bFGF2), monocyte chemotactic protein-1 (MCP1), interferon-inducible protein 10 (IP10), macrophage inflammatory protein 1A (MIP1A), platelet-derived growth factor subunit B (PDGFB), and vascular endothelial factor (VEGF)-A. The systemic persistence of inflammatory molecules causes widespread histological injury, leading to functional deterioration of the infected organ(s). Although multiple treatment modalities with varying effectiveness are being employed, nevertheless, there is no curative COVID-19 therapy available to date. In this regard, one plausible supportive therapeutic modality may involve administration of mesenchymal stem cells (MSCs) and/or MSC-derived bioactive factors-based secretome to critically ill COVID-19 patients with the intention of accomplishing better clinical outcome owing to their empirically established beneficial effects. MSCs are well established adult stem cells (ASCs) with respect to their immunomodulatory, anti-inflammatory, anti-oxidative, anti-apoptotic, pro-angiogenic, and pro-regenerative properties. The immunomodulatory capabilities of MSCs are not constitutive but rather are highly dependent on a holistic niche. Following intravenous infusion, MSCs are known to undergo considerable histological trapping in the lungs and, therefore, become well positioned to directly engage with lung infiltrating immune cells, and thereby mitigate excessive inflammation and reverse/regenerate damaged alveolar epithelial cells and associated tissue post SARS-CoV-2 infection. Considering the myriad of abovementioned biologically beneficial properties and emerging translational insights, MSCs may be used as potential supportive therapy to counteract cytokine storms and reduce disease severity, thereby facilitating speedy recovery and health restoration.


Тема - темы
COVID-19 , Mesenchymal Stem Cells , Adult , COVID-19/therapy , Cytokine Release Syndrome , Humans , Immunity , Immunomodulation , Mesenchymal Stem Cells/metabolism , SARS-CoV-2
13.
Sci Adv ; 8(25): eabm6504, 2022 06 24.
Статья в английский | MEDLINE | ID: covidwho-1909560

Реферат

Aging has been reported to deteriorate the quantity and quality of mesenchymal stem cells (MSCs), which affect their therapeutic use in regenerative medicine. A dearth of age-related stem cell research further restricts their clinical applications. The present study explores the possibility of using MSCs derived from human gingival tissues (GMSCs) for studying their ex vivo growth characteristics and differentiation potential with respect to donor age. GMSCs displayed decreased in vitro adipogenesis and in vitro and in vivo osteogenesis with age, but in vitro neurogenesis remained unaffected. An increased expression of p53 and SIRT1 with donor age was correlated to their ability of eliminating tumorigenic events through apoptosis or autophagy, respectively. Irrespective of donor age, GMSCs displayed effective immunoregulation and regenerative potential in a mouse model of LPS-induced acute lung injury. Thus, we suggest the potential of GMSCs for designing cell-based immunomodulatory therapeutic approaches and their further extrapolation for acute inflammatory conditions such as acute respiratory distress syndrome and COVID-19.


Тема - темы
COVID-19 , Mesenchymal Stem Cells , Animals , Cell Differentiation , Gingiva , Humans , Mesenchymal Stem Cells/metabolism , Mice , Osteogenesis
14.
Arch Virol ; 166(8): 2285-2289, 2021 Aug.
Статья в английский | MEDLINE | ID: covidwho-1826502

Реферат

Mesenchymal stromal cells (MSCs) are considered multipotent progenitors with the capacity to differentiate into mesoderm-like cells in many species. The immunosuppressive properties of MSCs are important for downregulating inflammatory responses. Turkey coronavirus (TCoV) is the etiological agent of a poult mortality syndrome that affects intestinal epithelial cells. In this study, poult MSCs were isolated, characterized, and infected with TCoV after in vitro culture. The poult-derived MSCs showed fibroblast-like morphology and the ability to undergo differentiation into mesodermal-derived cells and to support virus replication. Infection with TCoV resulted in cytopathic effects and the loss of cell viability. TCoV antigens and new viral progeny were detected at high levels, as were transcripts of the pro-inflammatory factors INFγ, IL-6, and IL-8. These findings suggest that the cytokine storm phenomenon is not restricted to one genus of the family Coronaviridae and that MSCs cannot always balance the process.


Тема - темы
Coronavirus, Turkey/physiology , Cytokines/metabolism , Virus Replication , Animals , Cell Differentiation , Cell Survival , Cytopathogenic Effect, Viral , Interferon-gamma/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/virology , Turkeys , Up-Regulation
15.
Cells ; 11(9)2022 04 21.
Статья в английский | MEDLINE | ID: covidwho-1818055

Реферат

Human SARS-CoV-2 and avian infectious bronchitis virus (IBV) are highly contagious and deadly coronaviruses, causing devastating respiratory diseases in humans and chickens. The lack of effective therapeutics exacerbates the impact of outbreaks associated with SARS-CoV-2 and IBV infections. Thus, novel drugs or therapeutic agents are highly in demand for controlling viral transmission and disease progression. Mesenchymal stem cells (MSC) secreted factors (secretome) are safe and efficient alternatives to stem cells in MSC-based therapies. This study aimed to investigate the antiviral potentials of human Wharton's jelly MSC secretome (hWJ-MSC-S) against SARS-CoV-2 and IBV infections in vitro and in ovo. The half-maximal inhibitory concentrations (IC50), cytotoxic concentration (CC50), and selective index (SI) values of hWJ-MSC-S were determined using Vero-E6 cells. The virucidal, anti-adsorption, and anti-replication antiviral mechanisms of hWJ-MSC-S were evaluated. The hWJ-MSC-S significantly inhibited infection of SARS-CoV-2 and IBV, without affecting the viability of cells and embryos. Interestingly, hWJ-MSC-S reduced viral infection by >90%, in vitro. The IC50 and SI of hWJ-MSC secretome against SARS-CoV-2 were 166.6 and 235.29 µg/mL, respectively, while for IBV, IC50 and SI were 439.9 and 89.11 µg/mL, respectively. The virucidal and anti-replication antiviral effects of hWJ-MSC-S were very prominent compared to the anti-adsorption effect. In the in ovo model, hWJ-MSC-S reduced IBV titer by >99%. Liquid chromatography-tandem mass spectrometry (LC/MS-MS) analysis of hWJ-MSC-S revealed a significant enrichment of immunomodulatory and antiviral proteins. Collectively, our results not only uncovered the antiviral potency of hWJ-MSC-S against SARS-CoV-2 and IBV, but also described the mechanism by which hWJ-MSC-S inhibits viral infection. These findings indicate that hWJ-MSC-S could be utilized in future pre-clinical and clinical studies to develop effective therapeutic approaches against human COVID-19 and avian IB respiratory diseases.


Тема - темы
Bronchitis , COVID-19 , Mesenchymal Stem Cells , Wharton Jelly , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Bronchitis/metabolism , Chickens , Humans , Immunologic Factors/metabolism , Mesenchymal Stem Cells/metabolism , SARS-CoV-2 , Secretome , Wharton Jelly/metabolism
16.
Int J Mol Sci ; 23(7)2022 Mar 30.
Статья в английский | MEDLINE | ID: covidwho-1785735

Реферат

Acute kidney injury (AKI) is a sudden decline of renal function and represents a global clinical problem due to an elevated morbidity and mortality. Despite many efforts, currently there are no treatments to halt this devastating condition. Extracellular vesicles (EVs) are nanoparticles secreted by various cell types in both physiological and pathological conditions. EVs can arise from distinct parts of the kidney and can mediate intercellular communication between various cell types along the nephron. Besides their potential as diagnostic tools, EVs have been proposed as powerful new tools for regenerative medicine and have been broadly studied as therapeutic mediators in different models of experimental AKI. In this review, we present an overview of the basic features and biological relevance of EVs, with an emphasis on their functional role in cell-to-cell communication in the kidney. We explore versatile roles of EVs in crucial pathophysiological mechanisms contributing to AKI and give a detailed description of the renoprotective effects of EVs from different origins in AKI. Finally, we explain known mechanisms of action of EVs in AKI and provide an outlook on the potential clinical translation of EVs in the setting of AKI.


Тема - темы
Acute Kidney Injury , Extracellular Vesicles , Mesenchymal Stem Cells , Acute Kidney Injury/pathology , Extracellular Vesicles/metabolism , Humans , Kidney/metabolism , Mesenchymal Stem Cells/metabolism
17.
Stem Cell Res Ther ; 13(1): 124, 2022 03 24.
Статья в английский | MEDLINE | ID: covidwho-1759777

Реферат

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread into more than 200 countries and infected approximately 203 million people globally. COVID-19 is associated with high mortality and morbidity in some patients, and this disease still does not have effective treatments with reproducibly appreciable outcomes. One of the leading complications associated with COVID-19 is acute respiratory distress syndrome (ARDS); this is an anti-viral host inflammatory response, and it is usually caused by a cytokine storm syndrome which may lead to multi-organ failure and death. Currently, COVID-19 patients are treated with approaches that mostly fall into two major categories: immunomodulators, which promote the body's fight against viruses efficiently, and antivirals, which slow or stop viruses from multiplying. These treatments include a variety of novel therapies that are currently being tested in clinical trials, including serum, IL-6 antibody, and remdesivir; however, the outcomes of these therapies are not consistently appreciable and remain a subject of debate. Mesenchymal stem/stromal cells (MSCs), the multipotent stem cells that have previously been used to treat viral infections and various respiratory diseases such as ARDS exhibit immunomodulatory properties and can ameliorate tissue damage. Given that SARS-CoV-2 targets the immune system and causes tissue damage, it is presumable that MSCs are being explored to treat COVID-19 patients. This review summarizes the potential mechanisms of action of MSC therapy, progress of MSC, and its related products in clinical trials for COVID-19 therapy based on the outcomes of these clinical studies.


Тема - темы
COVID-19 , Mesenchymal Stem Cells , Pneumonia , Respiratory Distress Syndrome , COVID-19/therapy , Humans , Mesenchymal Stem Cells/metabolism , SARS-CoV-2
18.
J Control Release ; 345: 214-230, 2022 05.
Статья в английский | MEDLINE | ID: covidwho-1747828

Реферат

Mesenchymal stem cell-derived small extracellular vesicles (MSC-EVs) are promising nanotherapeutic agent for pneumonia (bacterial origin, COVID-19), but the optimal administration route and potential mechanisms of action remain poorly understood. This study compared the administration of MSC-EVs via inhalation and tail vein injection for the treatment of acute lung injury (ALI) and determined the host-derived mechanisms that may contribute to the therapeutic effects of MSC-EVs in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells (macrophage cell line) and animal models. Luminex liquid chip and hematoxylin and eosin (HE) staining revealed that, compared with the vehicle control, inhaled MSC-EVs outperformed those injected via the tail vein, by reducing the expression of pro-inflammatory cytokines, increasing the expression of anti-inflammatory cytokine, and decreasing pathological scores in ALI. MSC-EV administration promoted the polarization of macrophages towards a M2 phenotype in vitro and in vivo (via inhalation). RNA sequencing revealed that immune and redox mediators, including TLR4, Arg1, and HO-1, were associated with the activity MSC-EVs against ALI mice. Western blotting and immunofluorescence revealed that correlative inflammatory and oxidative mediators were involved in the therapeutic effects of MSC-EVs in LPS-stimulated cells and mice. Moreover, variable expression of Nrf2 was observed following treatment with MSC-EVs in cell and animal models, and knockdown of Nrf2 attenuated the anti-inflammatory and antioxidant activities of MSC-EVs in LPS-stimulated macrophages. Together, these data suggest that inhalation of MSC-EVs as a noninvasive strategy for attenuation of ALI, and the adaptive regulation of Nrf2 may contribute to their anti-inflammatory and anti-oxidant activity in mice.


Тема - темы
Acute Lung Injury , COVID-19 , Extracellular Vesicles , Mesenchymal Stem Cells , Acute Lung Injury/therapy , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/therapeutic use , Antioxidants , Cytokines/metabolism , Disease Models, Animal , Extracellular Vesicles/metabolism , Lipopolysaccharides , Mesenchymal Stem Cells/metabolism , Mice , NF-E2-Related Factor 2/metabolism
19.
Cells ; 11(3)2022 01 29.
Статья в английский | MEDLINE | ID: covidwho-1667054

Реферат

The novel pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Mesenchymal stem cells (MSCs) are currently utilized in clinics for pulmonary inflammatory diseases, including acute respiratory distress syndrome and acute lung injury. Given that MSCs offer a promising treatment against COVID-19, they are being used against COVID-19 in more than 70 clinical trials with promising findings. Genetically engineered MSCs offer promising therapeutic options in pulmonary diseases. However, their potential has not been explored yet. In this review, we provide perspectives on the functionally modified MSCs that can be developed and harnessed for COVID-19 therapy. Options to manage the SARS-CoV-2 infection and its variants using various bioengineering tools to increase the therapeutic efficacy of MSCs are highlighted.


Тема - темы
Bioengineering/methods , COVID-19/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , COVID-19/virology , Cytokines/metabolism , Humans , Lung/metabolism , Lung/pathology , Lung/virology , Mesenchymal Stem Cells/cytology , Pandemics/prevention & control , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Treatment Outcome
20.
Front Immunol ; 12: 780900, 2021.
Статья в английский | MEDLINE | ID: covidwho-1662580

Реферат

Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in virtually all tissues; they have potent self-renewal capacity and differentiate into multiple cell types. For many reasons, these cells are a promising therapeutic alternative to treat patients with severe COVID-19 and pulmonary post-COVID sequelae. These cells are not only essential for tissue regeneration; they can also alter the pulmonary environment through the paracrine secretion of several mediators. They can control or promote inflammation, induce other stem cells differentiation, restrain the virus load, and much more. In this work, we performed single-cell RNA-seq data analysis of MSCs in bronchoalveolar lavage samples from control individuals and COVID-19 patients with mild and severe clinical conditions. When we compared samples from mild cases with control individuals, most genes transcriptionally upregulated in COVID-19 were involved in cell proliferation. However, a new set of genes with distinct biological functions was upregulated when we compared severely affected with mild COVID-19 patients. In this analysis, the cells upregulated genes related to cell dispersion/migration and induced the γ-activated sequence (GAS) genes, probably triggered by IFNGR1 and IFNGR2. Then, IRF-1 was upregulated, one of the GAS target genes, leading to the interferon-stimulated response (ISR) and the overexpression of many signature target genes. The MSCs also upregulated genes involved in the mesenchymal-epithelial transition, virus control, cell chemotaxis, and used the cytoplasmic RNA danger sensors RIG-1, MDA5, and PKR. In a non-comparative analysis, we observed that MSCs from severe cases do not express many NF-κB upstream receptors, such as Toll-like (TLRs) TLR-3, -7, and -8; tumor necrosis factor (TNFR1 or TNFR2), RANK, CD40, and IL-1R1. Indeed, many NF-κB inhibitors were upregulated, including PPP2CB, OPTN, NFKBIA, and FHL2, suggesting that MSCs do not play a role in the "cytokine storm" observed. Therefore, lung MSCs in COVID-19 sense immune danger and act protectively in concert with the pulmonary environment, confirming their therapeutic potential in cell-based therapy for COVID-19. The transcription of MSCs senescence markers is discussed.


Тема - темы
COVID-19/immunology , Cell Proliferation/physiology , Inflammation/immunology , Lung/immunology , Mesenchymal Stem Cells/immunology , Regeneration/immunology , Adult , COVID-19/metabolism , Cell Differentiation/immunology , Cell Movement/immunology , Cytoplasm/immunology , Epithelial-Mesenchymal Transition/immunology , Humans , Inflammation/metabolism , Mesenchymal Stem Cells/metabolism , SARS-CoV-2/immunology , Up-Regulation/immunology , Young Adult
Критерии поиска